Home

Lieven De Veylder

  • VIB group leader since 2001
  • PhD: Univ. of Ghent, Ghent, Belgium, 1998

Research areas

Cell BiologySystems biology | Plant biologyMicrobiology

Model organisms

Arabidopsis

Research focus

Wound induced plant regeneration

Injury-induced regeneration represents a self-preserving mechanism in most multicellular lifeforms. Depending on the species, the extent of regeneration is highly variable. Among metazoans regeneration is frequently restricted to tissue repair. Contrary, plants display an unrivaled regeneration capacity that not only restores damaged tissues, but can also give rise to whole plant bodies, allowing them to survive severe stress conditions, such as injury, herbivory attack, and dramatic weather conditions. In most regenerative systems, regeneration is controlled through activated cell proliferation in response to an injury-induced release of a mitogenic signal. However, the mechanisms by which cells in the direct vicinity trigger wound repair remains a major question in regenerative biology. In our research team we aim to address this topic on basis of the identification of a unique and novel plant regulator that is instantly induced by wounded cells and that plays an essential role in the replenishment of damaged stem cells, being a transcription factor nominated ERF115. Even as little as a single dying cell activates a rapid ERF115 response in its surrounding cells. Subsequently, it stimulates these cells to divide, in such manner replacing the damaged cell. Using these observations as starting point, we aim to understand the pathways that activate plant regeneration following wounding, and map the signalling cascades operating downstream of ERF115, knowledge that might help the regeneration process of recalcitrant crops.

In the news